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Brackets bonding has become a daily act in orthodontics since Newman has proposed in 1965 
to paste directly orthodontic brackets using an epoxy resin in replacement of sealing systems.[1]

The composite resins used in dentistry or orthodontics are complex polymers containing a variety 
of monomers, initiators, activators, stabilizers, plasticizers, and other additives. Two monomers 
are mainly used in orthodontic adhesive resins: Bisphenol A (BPA) diglycidyl dimethacrylate 
(Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA). BPA is used as a raw material for 
the formulation of Bis-GMA.[2]

Several monomers can enter the manufacturing of composite resins. In general, the main used 
monomer is Bis-GMA. However, its high viscosity prevents optimum handling. It should be 
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diluted with other monomers such as TEGDMA or urethane 
dimethacrylate (UDMA).[3]

The proportions of the monomers vary considerably 
according to the products and their clinical use. This is a 
proprietary trade secret maintained by the manufacturers.

In the intraoral environment, composite resins are exposed 
to extreme thermal changes, pH variances, mechanical 
erosion, and degradation occurrence from bacterial and 
salivary enzymes, which can cause BPA release.[4,5]

Several monomers contained in composite resins (such as Bis-
GMA, ethoxylated bisphenol A dimethacrylate [Bis-EMA], 
UDMA, and TEGDMA declared by manufacturer) are 
known to diffuse from partially polymerized materials and to 
be cytotoxic in vitro.[6,7]

The toxicity of resin-based materials is due to residual 
monomers as well as to the degradation products linked to 
the activity of salivary esterases.[8,9]

BPA is an endocrine disruptor with potential toxicity 
in vitro[10] and in vivo.[11]

Other compounds including TEGDMA and Bis-GMA, 
released by restorative and bonding composites, also present 
potential toxicity.[12-19] Infants, young children, and pregnant 
or lactating women are the most sensitive.[20]

Streptococcus mutans, one of the primary inhabitants present 
in saliva and at the restoration material-tooth interface, is 
regarded as the chief etiological agent responsible for dental 
caries.[21,22]

During the demineralization of the enamel organ, it is 
possible to observe white opaque lesions of the enamel to the 
junction between the brackets and the enamel. These lesions 
are minimal in general and not extended.[23]

The demineralization process is fast and can appear in the 
4th week of orthodontic treatment. These lesions are mainly 
related to inadequate plate control and ill-fitting orthodontic 
attachments.[24]

In orthodontics, because of the many sites of bacterial 
retention, the amount of S. mutans is increased during fixed 
treatments.[25-31]

Streptococcus species have been shown to contain esterases.[32] 
A study by Lara-Carrillo et al.[27] highlights the change in 
the saliva flow and the saliva buffer with the bonding of the 
orthodontic attachments.

It has been shown that the enzyme activity of saliva[33,34] 
and bacteria[34-36] has an impact on composite resins. This 
degradation of composite resins is done by an activity that 
affects the ester links of the organic matrix. These ester 
links are present in Bis-GMA and TEGDMA. In addition, 
the release of some products through the degradation of 

composite resins can have an effect on the growth of some 
bacteria species of Streptococcus and Lactobacillus.[37]

The purpose of this study was to evaluate the degradation 
products of orthodontic composites by S. mutans and 
then to quantify the levels of released BPA using gas-phase 
chromatography and mass spectrometry (GC–MS).

MATERIALS AND METHODS

Biodegradation experiment

Orthodontic light-cured composites were used for this study 
[Table  1]. Resin discs (10 mm in diameter and 1 mm in 
thickness) were prepared following the ISO 10993–12:2012 
standard for medical device testing in biologic systems (n = 4 
per resin).[38] They were then cured for 20 s using BA Optima 
10 LED Curing Light (light intensity 1000 ~ 1200 mW/cm2 
and wavelength 420 ~ 480 nm).

S. mutans strain (ATCC 25175 from Kwik-Stik 
microorganisms) was cultured on LB agar medium 
supplemented with brain heart infusion (BHI) broth.

The resin discs (n = 2 per resin and group) were incubated 
in 12-well plates at 37°C [Figure  1]. Each well was filled 
with 400 μL, either of BHI (control group) or S. mutans in 
BHI (test group). Incubation solutions were collected every 
48 h in each group and replaced with fresh solutions. These 
incubation solutions were accumulated and grouped. The 
assessment of degradation products from the composites was 
done at day 1 and day 30.[35] Bacitracin solution was added 
to the BHI to achieve a pure culture of S. mutans. The final 
concentration in bacitracin of culture medium was 0.2 U/mL.

Analytical method

The eluates of incubation solutions were extracted using 
solid-phase extraction (NH2 cartridge) and then analyzed by 
gas-phase chromatography and mass spectrometry (Agilent 

Table 1: Composite resins used in thy study.

Product (lot) Resin matrix Manufacturer

Grengloo 
(6623923)

TEGDMA, UDMA, 
HEMA, Bis-EMA6, 
GMA, EO-TMPTA, 
3-trimethoxysilylpropyl 
methacrylate

Ormco

Blugloo 
(6556174)

UDMA, Bis-EMA6, 
GMA, EO-TMPTA, 
3-trimethoxysilylpropyl 
methacrylate

Transbond XT 
(N921496)

Bis-GMA, Bis-MEPP 3M

Transbond LR 
(N919866)

Bis-GMA, TEGDMA
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6890 Series – Agilent 7673). A capillary column 30 m in 
length, internal diameter of 320 µm, and film thickness of 
0.25 µm were used with helium carrier gas at a flow rate of 
1.2 mL/min. The column temperature program was set as 
follows: Initially, 80°C for 1 min, increasing to 150°C at a rate 
of 20°C/min, and then increasing to 280°C for 2 min at a rate 
of 10°C per min. The injector temperature was 280°C and the 
transfer line was 280°C. Mass spectra were obtained using 
electron impact ionization (69.9 eV, 34.6 µA, 230°C).

Data were acquired by scan mode and selected ion 
monitoring (SIM) mode and were processed with MSD 
ChemStation software.

BPA and TEGDMA were identified by searching for their 
fragments in SIM mode.

The calibration curve and response factor were computed 
with reference BPA and caffeine as internal standard. Linear 
correlation with efficiency of 0.996 was obtained between BPA 
amount and corresponding peak area. BPA was quantified after 
his identification. The limit of quantification was 0.01 µg/mL.

RESULTS

Many chemical molecules were identified in tested resin 
materials [Tables 2 and 3].

For the test group, BPA was detected in Blugloo at day 1 
(0.38 μg/mL) [Figure 2]. TEGDMA was present in Grengloo 
and Transbond LR at day 1 [Figure 3].

DISCUSSION

Resin composites and adhesives are subject to a significant 
amount of biological breakdown in the oral cavity due to 
the presence of condensation type bonds within the resin.[39] 
These bonds, which include esters, urethanes, and amides, 
are predominantly found in the di-vinyl monomers, and they 

Table  2: Compounds found according to group and incubation 
time (BHI: Control group, SM: Test group, d1: Day 1, d30: Day 30).

Compound BHI d1 SM d1 BHI d30 SM d30
C7H10N2O2 X X X X
C11H18N2O2 X X X X
C14H16N2O2 X X X X
C15H20N2O2 X X X X
C15H20N2S X X X X
Uric acid C5H4N4O3 X X X
Oleic acid C18H34O2 X X
C12H14N2O2 X
C7H12N2O3 X
TEGDMA C14H22O6 X
BPA C15H16O2 X
C21H44 X
C17H36 X
C20H36O2 X
C20H38O2 X
Octadecanoic acid 
C18H36O2

X

C20H25NO3S X
C20H40O2 X
C18H32O2 X
C23H32O2 X
C5H9NO X

Table 3: Compounds found according to materials.

Compound Grengloo Blugloo Transbond 
XT

Transbond 
LR

C7H10N2O2 X X X
C11H18N2O2 X X X
C14H16N2O2 X X X X
C15H20N2O2 X X X X
C15H20N2S X X X X
Uric acid 
C5H4N4O3

X X X X

Oleic acid 
C18H34O2

X X X

C12H14N2O2 X
C7H12N2O3 X
TEGDMA 
C14H22O6

X X

BPA C15H16O2 X
C21H44 X
C17H36 X
C20H36O2 X X X
C20H38O2 X
Octadecanoic 
acid C18H36O2

X X X X

C20H25NO3S X
C20H40O2 X
C18H32O2 X
C23H32O2 X
C5H9NO X

are all prone to chemical hydrolysis, catalyzed by acids, bases, 
or enzymes.[40]

Figure 1: Resin samples immersed in brain heart infusion.
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Figure 2: Spectrum and concentration of bisphenol A detected in Blugloo.

Figure 3: Mass spectrum showing triethylene glycol dimethacrylate detected in the test group with Grengloo.

S. mutans has esterase activities at levels capable of 
degrading dental resin composites and adhesive system.[35] 
Consequently, the formation of bacteria dense biofilm can 
result in the ongoing destruction of the resin composite.

Many groups have studied the degradation of resin 
composites in the oral cavity. In the early 1990s, the focus of 
the studies shifted toward the chemical breakdown of these 
restorative materials because it was suggested that enzymes 

in the oral cavity may contribute to the degradation of 
resin composites.[41,42] Since then, a number of studies have 
investigated the degradation of resin composites in the 
presence of salivary-like enzymes[43-46] and the subsequent 
biological effects of the by-products on the surrounding 
bacteria and mammalian cells.[47-53] These biological processes 
that render commercial resins vulnerable to premature 
failure are currently beyond the control of the clinicians.
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While there have been studies investigating the impact of 
composite degradation products on bacterial growth and 
virulence gene expression,[54,55] the potential effect of bacterial 
degradative activity on resin composites and adhesives 
has yet to be explored. Therefore, we hypothesized that, in 
addition to acid production, cariogenic bacteria contain 
esterase activities that degrade dental resin composites and 
adhesives.

The results of analyses of leachable substances (monomers, 
additives, and degradation products) from dental polymer-
based materials may be influenced by the type of extraction 
media, the time and temperature of the extraction procedure, 
as well as the degree of curing and composition of the 
material.[39,56,57] It is known that methacrylates may degrade 
hydrolytically in aqueous environments.[39,58]

The results of this study support the hypothesis that 
cariogenic bacteria (S. mutans) contain esterase activities at 
levels capable of hydrolytic-mediated degradation of cured 
resin composites and adhesives.[35]

Orthodontic treatments increase the risk of the occurrence 
of carious lesions,[59] constituting a prejudice for patients and 
greatly compromising the success of these treatments. This 
risk is inherent both in the apparatus which causes an increase 
in plaque retention sites but also in a modification of the 
bacterial flora and in the age of patients.[60] The installation of 
orthodontic devices is followed by a modification in the oral 
ecosystem with an increase in the number of S. mutans and 
Lactobacilli.[23]

Human saliva has also been shown to hydrolyze resin 
composites and adhesives.[61]

Many bacterial species express esterases; however, the overall 
function of S. mutans esterases and, more specifically, their 
importance in contributing to the biodegradation process of 
dental resin composite restorations is not well-understood. 
In other bacteria, esterases have been linked to virulence and 
pathogenesis.[32,62,63]

CONCLUSION

•	 S. mutans can hydrolyze long-term orthodontic 
composites

•	 Monomers such as BPA and TEGDMA may be present 
in degradation products

•	 Leaching compounds can be separate and identify by 
GC–MS technique.
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