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Abstract
Any study involving a sample from population of interest may fail to detect the real 
significant difference in outcome between the groups being studied. The main reason 
for its failure may include a poorly designed study or a study that lacked power. This 
article will briefly summarize the concept of “power of study” which is necessary to 
validate clinical research work, wherein differences in outcome rates between the groups 
under a study are not very large.
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INTRODUCTION

For a researcher, formulation of  a hypothesis is the first 
major step in heading toward his/her research methodology. 
Hypothesis is a formal question which a researcher intends 
to resolve by scientific methods that relates an independent 
variable to some dependent variables,[1] for example, does 
rate of  orthodontic tooth movement  (OTM) differ in 
adult and adolescent patients during different phases of  
orthodontic treatment? This hypothesis is capable of  being 
objectively verified and tested.

To test a statistical hypothesis, we often consider null 
hypothesis and alternate hypothesis. A null hypothesis is 
an assertion about the value of  a population parameter.[2] 
It is an assertion that we hold as true unless we have 
sufficient statistical evidence to conclude otherwise. If  we 
are in a need to compare the rate of  OTM in adolescent 
and adult patients, we will proceed on the assumption 
that there is no difference in the rate of  OTM in two 

groups, then this assumption is termed as null hypothesis. 
The hypothesis that negates any kind of  relationship 
that can exist between the two variables is known as null 
hypothesis (H0). As against this, we may think that the rate 
of  OTM is higher in adolescent patients when compared 
with adult patients, then this hypothesis is known as 
alternate hypothesis (H1). Alternate hypothesis represents 
all other possibilities that can happen in any assumption 
other than null hypothesis, which one tries to disprove 
with his/her findings. There can be many alternate 
hypotheses, but only one null hypothesis can be proposed 
for any assumption. There are two types of  errors that 
one can make during the testing of  hypothesis. We may 
reject null hypothesis when it is true or we may accept 
null hypothesis when it is not true. The former is known 
as Type I error and the latter as Type II error [Table 1 
and Figure 1].[3]

The probability of  Type  I error is denoted by α and 
represents a level of  significance. It should always be 
chosen with great care and reason. It is always expressed 
in some percentage  (5%, 1%, or 0.01%) and is usually 
determined in advance before testing the hypothesis. 
We can control Type I error by fixing it at a lower level 
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of  significance, for example, fixing at 5% or 1% means 
maximum probability of  committing Type I error would 
be 0.05 or 0.01. In simple words, it means that researcher 
is willing to take as much as a 5% or 1% risk of  rejecting 
the null hypothesis when it happens to be true. Thus, the 
level of  significance denotes the maximum probability 
of  occurrence by chance and rejecting null hypothesis 
when it is true. But at the same time, when we try to 
reduce Type I error for a given sample size, the probability 
of  committing Type  II error increases.[3] Hence, both 
types of  error cannot be reduced simultaneously. If  we 
make α smaller (by accepting everything), we eventually 
increase β. Consider the case of  setting α = 0. Although 
this may appear good because it reduces the probability of  
Type I error to zero, this corresponds to the foolish case 
as it will never reject H0. Hence, the probability of  Type II 
error will increase to one.

Let us take an example:
Null hypothesis: Less than 90 g of  orthodontic force is not 
sufficient for active retraction of  canine.

Type I error: We reject null hypothesis (although it is true) 
and apply <90 g of  force, but actually no tooth movement 
is happening (no effect on population).

Type II error: We accept null hypothesis (although it is false) 
and apply more forces, which will be more harmful (more 
harm on population).

Hence, Type II error is more harmful in this experimental 
study. In this case, we should strive to reduce the probability 
of  Type II error more than that of  Type I error.

In the intuitive approach, we try to estimate the relative 
harmful effect of  the two types of  errors. The relationship 
between Type I and Type II errors is not straightforward 
as it is based on different assumptions: There has to be no 
effect on population to make Type I error whereas to make 
Type II error, we have to miss some important effect on 
population.[2] If  the effect of  both is roughly equal or if  we 
have not much knowledge about the relative harmful effect 
of  the two types of  errors, then we keep at 5%.

THE POWER OF THE TEST

The power (π) of  a test refers to the probability of  not 
committing a Type  II  (1‑β) error[4]  [Table  1]. It is the 
probability of  detecting a “true effect,” when the effect 
exists. A good hypothesis test rejects a null hypothesis when 
it is false. Having a high value for 1‑β (near 1.0) means it 
is a good test and having a low value (near 0.0) means it 
is a bad test (it is not rejecting null hypothesis when it is 
false). Hence, 1‑β is a measure of  how good a test is and 
it is known as the power of  the test.

The power of  the test is the probability that the test will 
reject H0 when in fact it is false. Conventionally, a test 
with a power of  0.8 is considered good as a standard for 
adequacy. This convention implies a four‑to‑one tradeoff  
between β‑risk and α‑risk (β is the probability of  a Type II 
error; α is the probability of  a Type I error, 0.2 and 0.05 are 
conventional values for β and α, respectively). In medicine, 
for example, tests are often designed in such a way that no 
false negatives (Type II errors) will be produced. However, 
this inevitably raises the risk of  obtaining a false positive 
(a Type I error). The rationale is that it is better to tell a 
healthy patient, “we may have found something ‑  let us 
test further,” than to tell a diseased patient, “all is well.”[2]

FACTORS THAT AFFECT THE POWER OF A TEST

The power of  a hypothesis test is affected by three factors:
•	 Sample size (n) ‑ greater the sample size (keeping other 

parameters constant), the greater the power of  the test
•	 The “true” value of  the parameter being tested ‑ the 

greater the difference between the “true” value of  a 
parameter and the value specified in the null hypothesis, 
the greater the power of  the test. That is, the greater 
the effect size, the greater the power of  the test

•	 Significance level (α) ‑ the higher the significance level, 
the higher the power of  the test. High power will less 
likely accept the null hypothesis when it is false, i.e., less 
likely will make a Type II error.

Table 1: Types of error with their probability
Possible Hypothesis test outcome

Null hypothesis true Null hypothesis false
Type 1 error
False negative 
probability = α

No error
Probability = 1-α

Reject null 
hypothesis

No error
Probability = 1- β

Type II error
False positive 
probability = β

Fail to reject Null 
Hypothesis/Accept 
Null Hypothesis

Figure 1: Type I and Type II errors in a given population
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If  we plot the values of  1‑β for each possible value of  the 
population parameter for which null hypothesis is not true, 
the resulting curve is known as power curve associated with 
the given test. Perhaps, the most common use of  power 
analysis is to determine the necessary number of  subjects 
needed to detect an effect of  a given size.

CONCLUSION

A power analysis is an effective measure to ensure that 
a good biostatistical study design has been planned and 
validated the research.

Before going on to advanced statistical procedure, studies 
must be adequately powered to achieve their aims, and 
appropriate sample size calculations should be carried out 
at the design stage of  any study.
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