Bimaxillary protrusion and gummy smile treated with clear aligners: Closing premolar extraction spaces with bone screw anchorage

Lexie Y. Lin¹, Chris H. Chang¹, W. Eugene Roberts²

¹Beethoven Orthodontic Center, Hsinchu, Taiwan, ²Department of Orthodontics, School of Dentistry, Indiana University, Indianapolis, United States.

ABSTRACT

Inadequate posterior anchorage is a serious limitation for aligner treatment involving extraction of four first premolars. Inappropriate axial inclinations may compromise intermaxillary occlusion and stability. OrthoBoneScrew® (OBS) anchorage is designed to augment the Invisalign® clear aligner G6 solution to produce more predictable outcomes as illustrated by the current case report. An 18-year-old female presented with two chief complaints: (1) Protrusive, incompetent lips, and (2) excessive gingival exposure when smiling (“gummy smile”). Clinical evaluation revealed bimaxillary protrusion, hypermentalis activity, anterior crowding, and excessive anterior axial inclinations, particularly of the lower incisors (116°). The American Board of Orthodontic (ABO) discrepancy index (DI) was 21. The treatment plan was extraction of all four first premolars, and clear aligner (Invisalign®) therapy anchored with four OBSs: Infra-zygomatic crest (IZC), and between the roots of the upper central and lateral incisors (Incisal) bilaterally. Eighteen months of initial treatment with 45 aligners retracted and intruded the anterior segments in both arches by closing the extraction spaces with supplemental anchorage provided by IZC and Incisal OBSs. The final series of 20 refinement aligners achieved an excellent outcome as evidenced by an ABO cast-radiograph evaluation (CRE) score of 10, and a pink and white (P&W) dental esthetic score of 3. Post-treatment analysis revealed multiple opportunities for improvement. The patient was well satisfied with the final outcome.

Keywords: Bimaxillary protrusion, Gummy smile, Premolar extraction, Clear aligner treatment, Invisalign G6, Infra-zygomatic crest, Incisal, Bone screws, Space closure, Anchorage, Torque control

INTRODUCTION

Modern aligner therapy has expanded the treatment perspective for managing complex malocclusions with removable appliances. The Invisalign® system (Align Technology, Inc., San Jose, CA, USA) is a leader in the applied technology. Over the years, clinical opinions of aligner therapy have progressed from doubtful to reserved, and they are now progressing to an evolving consensus that aligner therapy is an efficient solution for mild-to-moderate malocclusions. Although some complex malocclusions have been treated with aligners, the results are less accurate and predictable than treatment with fixed appliances.

One of the more challenging clinical scenarios for aligners is the treatment of extraction cases. In particular, root parallelism after space closure is inconsistent. Tipped teeth can be corrected with fixed appliances, but sequential treatment with two modalities may require more treatment time than with fixed appliances alone.
To improve clinical outcomes particularly for extraction of first premolars, Align Technology released the G6 protocol along with SmartStage® in 2015. The principle of differential moments (couples produced with coordinated sets of attachments) is used for Invisalign® G6 to provide anterior retraction with maximum posterior anchorage. SmartStage® is engineered to optimize the progression of tooth movement based on algorithms developed with a massive database. The force system for G6 is indeterminate mechanics which are not intuitive. If a clinician accepts the G6 protocol with optimized attachments, the treatment plan cannot be changed.

Clinicians who prescribe Invisalign® treatment still have much to learn regarding the biomechanics and efficacy of the system. Clear aligner treatment can be enhanced with auxiliaries designed to improve the predictability of outcomes. The aim for the present case report is to demonstrate the potential for OrthoBoneScrews® (OBSs) (iNewton Dental, Ltd., Hsinchu City, Taiwan) in supplementing anchorage. The authors feel this approach may evolve to be the “gold standard” for patients who demand inconspicuous aligner therapy for demanding malocclusions requiring extractions in all four quadrants.

The dental nomenclature for this report is the modified Palmer notation. Upper (U) and lower (L) arches, as well as the right (R) and left (L) sides, define the four oral quadrants: UR, UL, LR, and LL. Teeth are numbered 1–8 from the midline in each quadrant, for example, a lower right first molar is LR6.

DIAGNOSIS

An 18-year-old female presented with chief complaints of protrusive lips and a gummy smile tendency, which affected her confidence and productivity. The patient had no significant medical or dental history. Oral hygiene was acceptable, and her motivation for treatment was to improve smile esthetics with clear aligner treatment.

Pre-treatment facial photographs showed balanced facial proportions. A functional exam documented lip incompetence with hyperactive mentalis muscles to achieve lip closure [Figure 1]. The analysis of the pre-treatment diagnostic records revealed Class I molar and Class II canine relationships bilaterally [Figure 1]. Bimaxillary protrusion with an 5 mm overjet and 2 mm overbite was associated with ~3 mm of crowding in the upper arch, and an anterior Bolton ratio of 75.9%. The maxillary and mandibular midlines were deviated by 0.5 mm and 1.5 mm to the right, respectively. The panoramic radiograph showed four unerupted third molars, and cephalometric analysis revealed a normal skeletal relationship with furred incisors [Figure 2 and Table 1]. The American Board of Orthodontic discrepancy index (DI) was 21 as shown in the subsequent Worksheet 1.

TREATMENT OBJECTIVES

The treatment objectives were to: (1) Reduce dental protrusion by improving lip profile; (2) achieve normal overjet and overbite; (3) maintain a bilateral Class I molar relationship; (4) obtain a bilateral Class I canine relationship; (5) coordinate midlines; and (6) align arches.

TREATMENT ALTERNATIVES

The focus of Invisalign® aligner treatment was correction of the lip protrusion and gummy smile [Figure 3]. A non-extraction treatment approach was considered: arch retraction of 3 mm in every quadrant, interproximal reduction (IPR) to relieve crowding, and rounding out the arch form. Extraction of all the third molars was discussed because it failed to adequately reduce dental protrusion and mentalis strain. The alternative treatment option was extraction of four first premolars, followed by Invisalign® treatment supplemented with OBS anchorage to retract and intrude the incisors. The patient accepted the extraction

Table 1: Pre-treatment and post-treatment cephalometric analysis.

<table>
<thead>
<tr>
<th>Skeletal analysis</th>
<th>Pre-tx</th>
<th>Post-tx</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNA° (82°)</td>
<td>83.5°</td>
<td>83.5°</td>
<td>0°</td>
</tr>
<tr>
<td>SNB° (80°)</td>
<td>80.5°</td>
<td>81.5°</td>
<td>1°</td>
</tr>
<tr>
<td>ANB° (2°)</td>
<td>3°</td>
<td>2°</td>
<td>1°</td>
</tr>
<tr>
<td>SN-MP° (32°)</td>
<td>27.5°</td>
<td>26.5°</td>
<td>1°</td>
</tr>
<tr>
<td>FMA° (25°)</td>
<td>20.5°</td>
<td>19.5°</td>
<td>1°</td>
</tr>
</tbody>
</table>

Dental analysis

U1 TO NA mm (4 mm)	10	3.5	6.5
U1 TO SN° (104°)	118°	107°	11°
L1 TO NB mm (4 mm)	9.5	4	5.5
L1 TO MP° (90°)	115°	96°	19°

Facial analysis

E-LINE UL (~1 mm)	1	-2	3
E-LINE LL (0 mm)	3	-2	5
%FH: Na-ANS-Gn (53%)	56%	55%	1%
Convexity: G-Sn-Pg' (13°)	15°	11°	4°
treatment plan which involved: (1) Two 2 mm × 12 mm OBSs installed bilaterally in the infra-zygomatic crest (IZC), (2) two additional 1.5 mm × 8 mm Incisal OBSs in the maxillary anterior inter-radicular (I-R) region between central and lateral incisors bilaterally, (3) elastics (Ormco Corporation, Brea, CA) hooked on the bone screws to retract and intrude the maxillary anterior segment, and (4) IPR to address a Bolton discrepancy between the arches.

TREATMENT PROGRESS

iTero Element™ intraoral scans (Align Technology, Inc., San Jose, CA, USA) provided a 3D dataset. The ClinCheck™ (Align Technology, Inc., San Jose, CA, USA) system was used to plan the treatment and project the outcome. Both optimized and conventional attachments were applied in sequential staging [Figure 4]. The treatment was conducted in two phases: initial and refinement. Oral hygiene and aligner fit were monitored at monthly intervals.

INITIAL PHASE

The major goals of the initial treatment were to retract and the anterior segments as the arches were intruded [Figure 5]. A total of 45 sets of aligners were used over 13 months. According to the clinicians instructions, the first set of 38 aligners was changed every 10 days, and then every 7 days for the last seven aligners. Optimized root
Discrepancy Index Worksheet

TOTAL D.I. SCORE
OVERJET
- 0 mm. (edge-to-edge) = 0 pts.
- 1 – 3 mm. = 2 pts.
- 3.1 – 5 mm. = 4 pts.
- 5.1 – 7 mm. = 6 pts.
- > 7 mm. = 8 pts.

Negative OJ (x-bite) 1 pt. per mm. per tooth =

Total = 0 pt.

OVERBITE
- 0 – 3 mm. = 0 pts.
- 3.1 – 5 mm. = 2 pts.
- 5.1 – 7 mm. = 4 pts.
- Impinging (100%) = 5 pts.

Total = 0 pt.

ANTERIOR OPEN BITE
- 0 mm. (edge-to-edge), 1 pt. per tooth
- then 1 pt. per additional full mm. per tooth

Total = 1 pt.

LATERAL OPEN BITE
- 2 pts. per mm. per tooth

Total = 0 pt.

CROWDING (only one arch)
- 1 – 3 mm. = 1 pt.
- 3.1 – 5 mm. = 2 pts.
- 5.1 – 7 mm. = 4 pts.
- > 7 mm. = 5 pts.

Total = 1 pt.

OCCLUSION
- Class I to end on = 0 pts.
- End on Class II or III = 2 pts. per side
- Full Class II or III = 4 pts. per side
- Beyond Class II or III = 1 pt. per mm., additional

Total = 0 pt.

LINGUAL POSTERIOR X-BITE
- 1 pt. per tooth

Total = 0 pt.

BUCCAL POSTERIOR X-BITE
- 2 pts. per tooth

Total = 0 pt.

CEPHALOMETRICS (See Instructions)
- ANB ≥ 6° or ≤ -2° = 4 pts.
- Each degree < -2° x 1 pt. =
- Each degree > 6° x 1 pt. =

SN-MP
- ≥ 38° = 2 pts.
- Each degree ≥ 38° x 2 pts. =
- ≤ 26° = 1 pt.
- Each degree ≤ 26° x 1 pt. =

1 to MP ≥ 99° = 1 pt.
- Each degree > 99° 16 x 1 pt. = 16 pt.

Total = 17 pt.

OTHER (See Instructions)
- Supernumerary teeth x 1 pt. =
- Ankylosis of perm. teeth x 2 pts. =
- Anomalous morphology x 2 pts. =
- Impaction (except 3rd molars) x 2 pts. =
- Midline discrepancy (≥3mm) ≥ 2 pts. =
- Missing teeth (except 3rd molars) x 1 pt. =
- Missing teeth, congenital x 2 pts. =
- Spacing (4 or more, per arch) x 2 pts. =
- Spacing (6mm cont. diastema ≥ 2mm) @ 2 pts. =
- Tooth transposition x 2 pts. =
- Skeletal asymmetry (nonsurgical tx) @ 3 pts. =
- Addl. treatment complexities 1 x 2 pts. = 2 pt.

Identify: Gummy smile correction.

Total = 2 pt.

Worksheet 1: Discrepancy Index (D1).
control attachments were used on canines in combination with precision cuts. Optimized anchorage attachments were provided for the posterior teeth [Figure 6]. Half pontics were used for esthetic replacement of missing teeth. SmartStage™ technology was used for the upper incisors to minimize unwanted tipping and anterior extrusion. Anterior and IZC OBSs were placed when the tenth aligner was delivered. Elastics (3.5oz) were worn full-time from the U3s to the IZC OBS and from the anterior segment of the aligner to the Incisal OBSs bilaterally [Figure 7]. Inwardly-inclined cuts were made chair side with dedicated cutting pliers for every aligner, and all elastics were preloaded. The patient was trained to hook the elastics intraorally from the aligner cuts to the OBSs. An overlapping two-elastic design in the maxillary anterior avoided irritating the labial frenum. OBS

Figure 4: ClinCheck™ treatment plan and prescribed attachments are shown for the initial phase of treatment. Blue dots indicate variably predictable tooth movement (2.5–3 mm intrusion for lower incisors; 4–6 mm root movement for LR5). Black dots indicate less predictable tooth movement (>3 mm intrusion for upper incisors; >6 mm root movement for UR3).

Figure 5: ClinCheck™ initial phase treatment is projected by superimposition (blue: original tooth position; white: simulation of final tooth position) on dental landmarks that are programmed to be stable. Maximum anchorage is planned in the upper arch, consistent with more moderate anchorage for the lower arch. The anchorage requirements in both arches are quite challenging, and require TAD anchorage.

Figure 7: Intraoral photographs show the mechanics after OrthoBoneScrew™ placement and the application of 3.5oz elastics for retraction of buccal segments and intrusion of the maxillary anterior segment.

Figure 8: A progressive series of left buccal intraoral photographs show the progress of treatment compared to ClinCheck™ simulations: Left 3 months, 10/45 aligners; center 6 months, 21/45 aligners; right 10 months, 32/45 aligners. Note a modified G6 attachment is specified for the UL3 to accommodate a precision cut for an elastic anchored by the IZC OBS. For the colored markings in the simulations, see Figure 4 for details.

Figure 6: The initial phase of Invisalign® treatment utilizes SmartForce™ features (optimized attachments in hexagon) for the Invisalign G6 solution to provide maximal posterior anchorage for distal translation of canines.
APOS Trends in Orthodontics • Volume 10 • Issue 2 • April-June 2020 | 125

anchorage was essential for achieving the ClinCheck® simulations during treatment with the initial series of aligners [Figure 8]. The outcome at the conclusion of the initial phase of treatment was dependent on bone screw anchorage [Figure 9].

REFINEMENT PHASE

Refinement (finishing) with 20 additional aligners was conducted to correct the Class II relationship on the right side by retracting the UR quadrant 1 mm [Figure 10]. After all extraction spaces were closed, IPR was carried out to reduce black triangles and address the Bolton discrepancy [Figure 11]. In the finishing stage, the heavy occlusal contacts on posterior teeth were reduced. Subsequently, conventional attachments replaced the optimized attachments to provide predictable retention. Precision cuts were again prescribed for the finishing mechanics and retention. The patient continued to use all elastics bilaterally as prescribed.

RETENTION

Essix (Dentsply Sirona, Harrisburg PA) retainers were delivered for both arches. The patient was instructed to wear them full time for the first 6 months post-treatment and nights only thereafter. Instructions were provided for home care, as well as for maintenance of the retainers.

TREATMENT RESULTS

This case report describes the correction of a malocclusion with a DI of 21, which was treated to an excellent CRE of 10 and a P&V esthetic score of 3, as shown in the subsequent worksheets (Worksheets 2 and 3). The total treatment duration was 18 months with a total of 65 aligners (45 + 20). Post-treatment records document achievement of all treatment objectives relative to good dental alignment and dentofacial esthetics [Figure 11]. Ideal overbite and overjet were achieved. Most importantly, all extraction spaces were closed with good...
Lin, et al.: Mini-screw solution to first premolar extraction space closure with aligners

APOS Trends in Orthodontics • Volume 10 • Issue 2 • April-June 2020 | 126

Maintenance of root parallelism (axil inclination) [Figure 12]. Upper and lower incisors were retracted and uprighted, improving the patient’s lip profile and facial esthetics [Table 1 and Figure 13]. Intrusion of the entire maxillary dentition corrected the gummy smile, and produced a slight counterclockwise rotation of the mandible to close the vertical dimension of occlusion. Buccal segments were corrected to Class I bilaterally. Upper and lower midlines were coincident with the facial midline. The patient was highly motivated and compliant with aligner wear and elastics. She was extremely happy with the treatment results. Overall, a near ideal outcome was achieved. Arrangements will be made in the future for third molar extractions.

DISCUSSION

Extraction of four first premolars is often indicated for Asians to correct typically Class I malocclusions with bimaxillary protrusion with or without crowding. Initial crowding may contribute to anchorage loss with fixed appliances and aligners. However, with the current Invisalign® approach,
Cast-Radiograph Evaluation

Patient

Total Score: 10

Alignment/Rotations

Marginal Ridges

0

Buccolinguinal Inclination

0

Overjet

0

Occlusal Contacts

3

Occlusal Relationships

6

Interproximal Contacts

0

Root Angulation

0

INSTRUCTIONS: Place score beside each deficient tooth and enter total score for each parameter in the white box. Mark extracted teeth with "X". Second molars should be in occlusion.

Worksheet 2: Cast-Radiograph Evaluation (CRE).
IBOI Pink & White Esthetic Score

Total Score = \[\boxed{3}\]

1. **Pink Esthetic Score**

 Total = \[\boxed{2}\]

 - 1. M & D Papillae: 0 1 2
 - 2. Keratinized Gingiva: 0 1 2
 - 3. Curvature of Gingival Margin: 0 1 2
 - 4. Level of Gingival Margin: 0 1 2
 - 5. Root Convexity (Torque): 0 1 2
 - 6. Scar Formation: 0 1 2

2. **White Esthetic Score** (for Micro-esthetic)

 Total = \[\boxed{1}\]

 - 1. Midline: 0 1 2
 - 2. Incisor Curve: 0 1 2
 - 3. Axial Inclination (5°, 8°, 10°): 0 1 2
 - 4. Contact Area (50%, 40%, 30%): 0 1 2
 - 5. Tooth Proportion: 0 1 2
 - 6. Tooth to Tooth Proportion: 0 1 2

Worksheet 3: Pink & White Esthetic Score (P&W)
crowding is directly related to predictable tooth movement with aligners. Thus, the overall tooth movement, as well as mesial tipping and translation of first molars, is close to the pretreatment prediction. Because the current patient had minimal crowding but severe protrusion, firm posterior anchorage (OBSs) was indicated.

An ideal soft-tissue display when smiling is 1–2 mm of attached gingiva. While orthodontists rate 2–3 mm of gingival exposure as unattractive, general dentists, and laypeople feel that >4 mm is required to rate a smile as unattractive [Figure 3]. A “gummy smile” may have both extra-oral and intra-oral dimensions. Differential diagnosis for the current patient favored a dental origin because the morphology was not consistent with anterior dentoalveolar extrusion nor vertical maxillary excess. The patient’s lips were incompetent at rest, but did contact with hypermotor activity, so it was important to control the vertical dimension of occlusion [Figure 1]. The use of the maxillary anterior mini-screws was originally proposed by Lin et al.

Extraction cases with gummy smile are recognized as challenging malocclusions for clear aligner treatment. Ideal ClinCheck® simulations are difficult to achieve. The “bowing” and/or “bite block” effect(s) may enhance the gummy smile tendency or deepen the bite with conventional aligners, so mini-screws play a key role in expanding the scope for clear aligner treatment. As shown in [Figure 14], an extra-alveolar (E-A) retracting force on the dentition anchored with IZC OBSs produced a favorable clockwise moment to deepen the plane of occlusion, but the position of the center of rotation (Crot) in 3D was unknown. Crot for posterior rotation of the lower arch with mandibular buccal shelf OBS is actually an axis of rotation in 3D that has been calculated with finite element analysis (FEA) of cone-beam computed tomography (CBCT) images. The calculated Crot was far more anterior and occlusal than the previous 2D estimates. If the calculated Crot is similar for IZC anchorage in the upper arch, E-A posterior anchorage has less of an effect on steepening the maxillary plane of occlusion to produce incisor extrusion than is implied in 2D [Figure 14].

Realistic assessment of the 3D biomechanics relative to IZC anchorage for aligner treatment is not possible without FEA of CBCT images. However, in the meantime 2D analysis is helpful for routine clinical applications [Figure 14]. When the buccal elastic force is parallel to the occlusal plane, clockwise rotation of the occlusal plane is expected to extrude the incisors. I-R OBSs in the incisal anchorage position between the central and lateral incisor roots are essential for reversing the extrusive component on the anterior segment. In addition, the anterior vertical force results in a slight flattening of the occlusal plane and net intrusion of the maxillary arch [Figure 15]. The combination of all four OBSs (2 IZC and 2 Incisal) retracted and intruded the maxillary incisors [Figure 13]. In addition, the roots in the buccal segments were well aligned (parallel) at the end of treatment, but they were perpendicular to the occlusal plane rather than distally oriented [Figure 2]. One can view the impressive results [Figures 11-13] as achieving the full potential of aligners, but more properly OBS anchorage expanded the scope of aligner treatment. However, there is room for improvement particularly in regard to root angulations in the maxillary posterior segments.
[Figure 15] demonstrates the application of anterior I-R bone screws with elastics attached to “inwardly inclined” cuts on the palatal surface of the central incisors. The cuts are made chairside for every aligner supplied with a special cutting plier. The patient fits elastics into the slots before seating the aligner on the arch, and then stretches the elastics over the incisal bone screws with finger pressure [Figure 15].

The overall failure rates for anterior I-R screws and IZC E-A screws are 7.2%[31] and 6.3%,[32] respectively. The failure rates for TADs anchoring aligners are unknown, but the hypothesis is the failure rate which will be lower because the applied force is lower and it is not applied full time. Further study is required to resolve this important issue.

All treatment objectives were met. Despite the patient’s compliance in wearing aligners and elastics, there was Class II “window” along the distal incline of the incisal edge of both maxillary canines which extended posteriorly for all the interproximal intercuspation in the buccal segment [Figure 11]. This problem could be more clearly assessed with articulated casts. There were several contributing factors for the occlusal irregularities: (1) slight Class II relationship of the U3s and U4s, (2) inadequate distal movement of the U3 roots, and (3) insufficient extrusion of the L4s. In retrospect, closer monitoring of the ClinCheck® setup to resolve the Class II buccal segments may have indicated less IPR in the maxillary anterior region [Figure 10] and more IPR of the lower anterior segment to create additional overjet to accommodate the Class II correction. In addition, distal root movement for all teeth in the maxillary buccal segments was needed. The roots were parallel [Figure 12] but they were too upright to achieve an ideal intercuspal relationship. Overall, the result was excellent (CRE 10), but there was potential for a more ideal outcome.

The compensatory mechanism in the setups for Invisalign® extraction cases with mini-screw anchorage is similar to treating gummy smile cases. Four screws can prevent unattractive bowing effects, and at the same time save dozens of additional aligners. Once realistic 3D biomechanics are calculated,[29] it will be possible to further refine aligner alignment with TAD anchorage to achieve even more ideal results. The goal is to be competitive with the high accuracy for non-extraction aligner treatment.[33]

CONCLUSIONS

Closure of extraction spaces with Invisalign® appliances alone can be challenging and frustrating. Clinicians should be prepared for anterior dumping and posterior torque loss. Prevention is better than cure. Aligners can be well integrated with TAD anchorage to execute a broad range of malocclusion corrections. Despite the excellent outcome for the current case, the treatment details should be carefully interpreted. 3D studies of the biomechanics are needed to formulate robust clinical recommendations.

Acknowledgments

The authors would like to thank Mr. Paul Head for proofreading this article.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES